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Modeling Potentiometers and Variable Resistors 
 

In this application note, we will model potentiometers and variable resistors using OrCAD Capture and simulate 

the example circuits, which include models of potientiometer and variable resistors, using PSpice.  
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Introduction 
In this application note, we will model potentiometers and variable resistors using OrCAD Capture and simulate 

the example circuits, which include models of potientiometer and variable resistors, using PSpice.  

 

Electrically, a potentiometer consists of two resistors connected in series. The specification for the potentiometer 

consists of: 

1. The total resistance (R), and 

2. The pot’s setting (SET). That is, where the center tap is set. 

A convenient way to describe this is to define SET to be 0 when the tap is all the way at the bottom and 1 

when it is all the way at the top. 

Modeling Potentiometer 
A potentiometer can be implemented by the following subcircuit:  
 

    .SUBCKT POT 1 T 2 PARAMS: VALUE=1K SET=0.5 

    RT 1 T {VALUE*(1-SET)+.001} 

    RB T 2 {VALUE*SET+.001} 

    .ENDS 

 

The values 1.001 (instead of 1) and .001 (instead of 0) are used to prevent the resistors from having 0 ohms at 

the extremes. 

 

So far, the setting of the pot has been static. That is, it does not change with time. This is appropriate for almost 

all applications, since the time required for the movement of the pot is much longer than the electrical time 

constants of the circuit. In other words, there is no loss of information by running several transient analyses and 

varying the pot’s setting with a .STEP command. A typical usage would be: 

 

    .PARAM SET=.5 

    .STEP PARAM(SET) 0, 1, .2 

     X1 3 5 17 POT PARAMS: R=10K SET={SET} 

 

Here a 10k pot is used in 6 runs, having the settings 0, .2, .4, .6, .8, and 1. In schematics there is a symbol for a 

potentiometer located in breakout.olb. The following example circuit shows that how a pot may be used with 

an adjustable regulator.  
Note: The pot R1 is swept to show the adjustment range of the regulator. 

 

 

Figure 1: Linear potentiometer test circuit 
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Figure 2: Simulation result for Linear potentiometer circuit 
 

 

For this analysis, a DC sweep of the parameter PSET is used and PSET is swept from 0 to 1 in increments 

of 0.2. 

 

So far we have assumed that the pot is linear, but for a logarithmic pot we need an extra parameter, that is, the 

dynamic range of the pot. The potentiometer can then be implemented by the following subcircuit. 

 

    .SUBCKT POT (TOP, BOTTOM, TAP) PARAMS: R=1K RANGE=1000 SET=.5 

     RTOP TOP TAP {R-(R/RANGE)*PWR(RANGE,SET)} 

     RBOT TAP BOTTOM { (R/RANGE)*PWR(RANGE,SET)} 

    .ENDS 

 

As SET goes from 0 to 1, the value of RBOT goes logarithmically from R÷RANGE to R. RTOP makes up the 

difference between RBOT and the total resistance of the pot. 

If a time-varying potentiometer is needed, it can be built using the same ideas as above. The subcircuit for time-

varying potentiometer implements a voltage controlled resistance. One then builds an appropriate controlling 

waveform (using, for instance, the piecewise linear (PWL) type) to vary the resistance as desired. 

 

 

Figure 3: Time-varying potentiometer test circuit 
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Figure 4: Simulation result for Time-varying potentiometer circuit 
 

 

The simulation results show the change in resistance as a function of time versus the output voltage to be 

measured. 

 

Modeling Variable Resistors: Strain Gauge Resistive 
Bridge Circuit 
Variable resistors can also be used to implement many kinds of sensors. For example, a strain gauge, which 

consists of a resistance bridge, can be implemented using the following subcircuit: 

 

    .SUBCKT GAUGE (IN+ IN- OUT+ OUT-) PARAMS: R=1K F=0 SENS=1e-3 

     RUL IN+ OUT+ {R*(1+F*SENS)} ; upper left 

     RUR IN+ OUT- {R*(1-F*SENS)} ; upper right 

     RLL IN- OUT+ {R*(1-F*SENS)} ; lower left 

     RLR IN- OUT- {R*(1+F*SENS)} ; lower right 

    .ENDS 

 

R can be determined by the gauge’s current drain (I) at the bias voltage (V), that is, R = V/I. SENS sets the 

sensitivity of the gauge and F is the applied force. 
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Figure 5: Strain Gauge Bridge Circuit 

For example, as strain gauge is part of a pressure sensor, the full-scale output is 50 mV with a bias voltage of 10 
V and the full scale corresponds to a pressure of 500 psi. Within the normal operating range, the bridge output 

is 10V*(F*SENS). In this case, with the full-scale output 50 mV at F = 500, the SENS = 50mV/(10V*500) = 
10e-6. 

 

 

Figure 6: Simulation result for Strain Gauge Bridge circuit 
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Figure 1: Top-level schematic for the frequency-comparator circuit 

 

The frequency-comparator circuit accepts two reference frequency inputs, and a test frequency input which is 

compared to the references. After initialization and start-up, the circuit produces fast, slow, OK, and error 

indications. Operation is continuous as long as both of the reference signals are applied. Initialization is 

accomplished by applying a low pulse to the INIT input, having a minimum width of 40 nsec. At least 40 nsec after 

the negative-going edge of the INIT input, circuit operation commences upon applying a negative-going edge to 

the RUN input. Outputs of the circuit–SLOW, FAST, OK, and ERROR–are pulses indicating the result of 

comparing the test frequency signal, FTEST, to the low and high frequency reference signals, REFL and REFH, 

respectively. The ERROR pulse is generated if more than 7 complete periods of the REFL signal are observed 

with no activity on the FTEST input during that time. 
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Figure 2: INIT block implementation 

 

 

 

Figure 3: PICD block implementation 
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Figure 4: Error Detect Logic 

Implementation 
The frequency-comparator circuit is designed in OrCAD Capture using hierarchical blocks for the initializer (INIT 

block), cycledetectors (PICD blocks), state-decoder (SDL block), and errordetector (EDL block). The design has 

two alternative implementations: a gate-level implementation using off-theshelf 74xx parts (see Figure 5), and a 

functionally equivalent implementation using a mixture of 74xx parts and a commonly available Programmable 

Array Logic (PAL) device, PAL20RP4B (see Figure 6). Both implementations use the digital stimulus include 

file,Freq_comparator.stm, providing definitions for the INIT, RUN, MODE, REFH, REFH, FTEST, and SYSCLK 

input signals. The design alternatives are implemented as two views of the SDL block, with the DEFAULT view 

being the gate-level implementation, and the PAL-IMPL view being the PAL implementation. For the PAL-IMPL 

view, the data required to program the PAL20RP4B device is supplied in a JEDEC file, FRQCHK.JED, generated 

using OrCAD/PLD. 
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Figure 5: One implementation of the SDL block–the gatelevel view 

 

 

Figure 6: Another implementation of the SDL block–the PAL view 
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Operation 
The three frequency inputs–REFL, REFH, FTEST–each drive a separate instance of a cycle-detector circuit 

(PICD blocks). Each cycle-detector is made up of two pairs of D-type flip-flops and a few basic gates. After having 

been reset and enabled, the cycle-detectors output a HI level as soon as two similar edges (e.g., falling) have 

been applied. This indicates that one complete period of the input signal has been observed. The circuit 

implements a simple finite-state machine (see Figure 7) that recognizes the order in which the individual 

frequency inputs make complete cycles. 

 

Figure 7: A Complete Cycle 

For example, suppose that the REFH signal period is observed first (generating N1), followed by the REFL signal 

period (generating N2), then the FTEST period (generating N0). This indicates that the FTEST frequency is too 

low and that the SLOW output should be pulsed. But if the FTEST period is observed before the REFL cycle, an 

OK pulse is produced. The state machine current state simply represents the order of activity that has been 

observed since the last initialization or reset, which occurs every time any kind of output pulse is generated. The 

cycle-detectors monitor the input activity and produce the next state value (N3, N2, N1, N0), which is fed to the 

state-decoder (SDL block). At a rate determined by the system clock, SYSCLK, this next state becomes 

the current state; the 74154 4/16 decoders in the gate-level view of the state-decoder, continually provide unary 

logic indications of the next/current transitions (since next state values are not synchronized to SYSCLK). The 

random combinational logic in this same view recognizes the specific transitions that comprise the conditions of 

interest, i.e., FAST, SLOW, and OK, as per the state-transition diagram. (In the PAL view, the PAL20RP4B device 

replaces all of the decoding logic as well as the 4-bit register representing the current state value. The alternative 

implementations are functionally identical.) Note that the output indicators are not static state assignments; they 

are derived from selected state transitions. Thus, S14 þ S15 recognizes a SLOW condition, while S10 þ S15 

signifies an OK condition. 

The error-detector logic (EDL block) waits for the TIMEOUT signal output by the timeout generator. The timeout 

generator is simply a counter whose Q3 output indicates that the 8th rising edge of the low frequency reference, 

REFL, has occurred. If none of the normal output indicators (SLOW, FAST, or OK) have occurred before 

TIMEOUT, the ERROR output is asserted. The error-detector also asserts its DONE output whenever any of 

FAST, SLOW, OK, or ERROR have occurred. 
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Figure 8: State transitions during frequency-comparator operation 

 

The initialization/reset logic (INIT block) performs two functions. One distributes the effects of the INIT and RUN 

inputs, as defined in the stimulus include file, Freq_comparator.stm. The other uses the DONE signal from the 

error-detector to generate a RESET pulse; this has the same effect as the external RUN pulse–to restore the 

state machine to its starting state (0) as well as reset the cycle-detectors, timeout generator, and flip-flops in the 

error-detector. Normal operation then resumes.  

 

    JEDEC file containing the programming for the PAL20RP4B  

 

    OrCAD PLD 386  

    Type: PAL20RP4B  

    *  

    QP24* QF2568* QV1024*  

     F0*  

    L0000 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 01 *  

    L0040 11 11 11 11 11 11 11 01 11 11 11 01 11 11 11 11 11 11 11 11 *  

    L0080 11 11 11 11 11 11 11 11 11 10 11 11 11 11 11 11 11 11 11 11 *  

    L0120 11 11 11 11 11 11 11 11 11 11 11 11 11 10 11 11 11 11 11 11 *  

    L0320 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 01 *  

    L0360 10 11 10 11 11 11 01 01 11 01 11 01 11 01 11 11 11 11 11 11 *  

    L0640 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 *  

    L0960 11 11 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 *  

      

    L1280 11 11 11 11 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 *  

    L1600 11 11 11 11 11 11 10 11 11 11 11 11 11 11 11 11 11 11 11 11 *  

    L1920 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 01 *  

    L1960 10 11 01 11 10 11 01 01 11 01 11 01 11 01 11 11 11 11 11 11 *  

    L2000 01 11 01 11 01 11 01 10 11 10 11 10 11 11 11 11 11 11 11 11 *  

    L2240 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 01 *  

    L2280 01 11 01 11 10 11 01 01 11 01 11 01 11 01 11 11 11 11 11 11 *  

    L2320 01 11 11 10 01 11 01 11 11 11 11 11 11 11 11 11 11 11 11 11 *  

    L2560 11 11 11 11 *  

    C4B0E*  

    CCF0  

    Stimuli for the INIT, RUN, MODE, REFL, REFH, FTEST, and SYSCLK inputs  

 

    * "frqchk.stm" stimulus file  

    *  

    uh1 stim (4,1111) $g_dpwr $g_dgnd  

    + INIT RUN MODE REFL  

    + IO_STM IO_LEVEL=0  

    + 0s 1100  

    + 2055ns 0100  

    + 2135ns 1000  

    + 2175ns 1000  

    + 2215ns 1000  

    + 2255ns 1100  
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    + 5us 1101  

    + label=loop1  

    + +10us 1100  

    + +10us 1101  

    + +10us goto loop1 -1 times  

    uh2 stim (1,1) $g_dpwr $g_dgnd  

    + REFH  

    + IO_STM IO_LEVEL=0  

    + 0s 0  

    + +3us 1  

    + label=loop1  

    + +5us 0  

    + +5us 1  

    + +5us goto loop1 -1 times  

    uh3 stim (1,1) $g_dpwr $g_dgnd  

    + FTEST  

    + IO_STM IO_LEVEL=0  

    + 0s 0  

    + label=loop1  

    + +20us 1  

    + +20us 0  

    + +20us goto loop1 5 times  

    + +0s 1  

    + label=loop2  

    + +3us 0  

    + +3us 1  

    + +3us goto loop2 20 times  

    + +0s 1  

    + label=loop3  

    + +6us 0  

    + +6us 1  

    + +6us goto loop3 10 times  

    uh5 stim (1,1) $g_dpwr $g_dgnd  

    + SYSCLK  

    + IO_STM IO_LEVEL=0  

    + 0s 0  

    + +2us 0  

    + label=loop1  

    + +800ns 1  

    + +800ns 0  

    + +800ns goto loop1 -1 times 
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PSpice Simulation—PAL View 
The transient analysis is defined with: Print Step = 1us and Final Time = 1ms. All flip-flops must be initialized in 

the 0 state (rather than the default X state). This allows the simulator to properly initialize the circuit by forcing the 

reset logic to a deterministic state (non X; the hardware implementation would eventually syncronize itself to the 

input stimuli and operate correctly). In the top-level schematic, the SDL block is the only block with more than one 

view. Without further setup, OrCAD Capture will generate the PSpice netlist using the DEFAULT gate-level view 

for SDL. After running the simulation by PSpice, the state-machine operation is viewed in Probe by placing 

markers on the appropriate wires and buses, or by typing the signal names in the Probe dialog under the 

Trace/Add command as follows:  

 

SYSCLK, REFH, REFL, FTEST 

FAST, SLOW, OK, ERROR 

{N3, N2, N1, N0} ;NEXT 

{C3, C2, C1, C0} ;CURRENT  

 

Figure 9 demonstrates the correct response of the circuit to the digital stimulus at FTEST. 

 

 

Figure 9: Frequency-comparator output as FTEST input is Varied 
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